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~GWALONG SQUARE TUBEIK ‘IW3SION

, AND cOklmEsmoIv

By Bernard Budiansky, Manuel Reti, snd Arthur C. Gilbert

.

The bucM3ng of a infinitely lcmg square tube under combined
torsia end compressicm is investigated by mesns of em e=ct energy
method Utflizing kgrangian multipliers. An interaction curve is
obtained from wkLch-
loading required to
loading is present.

‘it ~EIpossibl~ to detezmdne the amount of one
pwduce” buckling when a ‘@ven amount of the other

J3TRODUCTION . ,

The local buc~ing of a long, thin+all, square tube subjected to
a conibinationof torsion end Lx@tudhwl” compression is investigated
theoretically in the present paper. The wells of the tube are considered
to be infinitely long flat plates ccmtinuous over non.defletting ltie
supprts at the corners. An exact theoretical analysis of the problem
by means of the Iagrangisn mltiplier method, presented in detail in
the appendix, is used to derive en interaction curve which gives the
combinations of torsion and compression required to produce local
buckling.
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Young~s modulus
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plate stiffness in beniUng
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.
torque

compressive-stress coefficient
. ()“ b~

()b%-” -
she~ess coefficient T —

Y?D

ratio of shesr stress presmt to critical shear stzressfor
pure torsiti

ratio of coqressive stre5s present
stress for pure ccqression

plate coorUnate parallel to length

plate coordinate perallel to width

deflection normal to plane of plate

Fourier coefficiats

~~ -tip~ers

half wave length

internal bending

exbemal work of

external work of

integers

energ”

compressive stress

shear stress

to critical caressive

~ AD DEXXJSSION ,

shear stress of aThe critical caibinaticm of compressive snd
long squere tube (see fig. 1) is given by the fonmilas

la
u=kc —

b%, ”

end
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where T is related to the toiziltorque T by the z“orraula

An interaction curve for the critical cmibtitions of the stress “
coefficients kc and k8 is presented fi figure 2; the theoretical
anslysis from which this curve is obtahed is given tithe appendix.

Essentially the interacti& curve is a curvilinear portion jo3ned
to a straight portion; it is of interest to cmupare this curve with the .
interaction curve for an isolated simply supported plate also shown in
fi~e 2 (see reference 1). The disparity in behavior of the two curves
may be explained in terms of nodal patterns. Ih the case of the isolatsd
plate, the hvd3nation as well as the spacfng of the tranfrversenodal
lines adjust themselves so as to cause the bucklhg stress to be a
minimum. Thus, as relatively more compression is applied, the no&1 lines
become less ticlined, until, for the case of pure compression, they are
straight and perpendicular to the edges of the plate. However, b the
case of the square tube, the ticlhat ion and spacing of the nodal lines
are always ccmstrained to be such that a ndal. line be continuous all
the way around the tube. But, as relatively more compression is applied,
at a certati ratio of compressive to shear stress, the nodal lines
suddenly cease to be inclined and become straight and perpendicular to
the tube corners (end thus still rmain continuous around the tube).
Bucklimg with this t~e of nodal ~attern corresponds to the straight
portion of the titeraction curve. The closeness of the two.curves in
the shear-predominatingrenge is due to the fact that the nodal pattern
for the isolated simply supported plate b pure shear happens to be one
that would very nearly be continuous around a square tube made up of
four such plates. /

The interaction curve for the square tube is shown in stress-ratio
form in figure 3 and is cmpsred with a parabolic interaction curve that
is shown in reference 1 to hold very closely for an”isolated plate
having equal elastic restraint of any magnitude along the edges. Tk
comparison shows clearly that, at least”in the compression=predominati.ng
range, it would be unduly conservative to consider th9 walls of the tube
to behave as isolated elastically restrained plates.

CONCLUDING REMARKS

A theoretically computed titeractim curve for the buckling of an
infinitely long square tube h torsion end compression is presented.
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Frcm this curve it csn be concluded that en a~eciable mount of torsion
may be ~resent tithout in auy way reducing the compression required for
buckling.

.

La@Ley Aeronautical Lahratay .
Nationsl Advisory Cmmittee for Aeronautics

Ia@-ey Field, Ta., Septeniber10, 1948
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TEEmm?IcAL fmfumm

For the purpose of the present analysis, the squxre tube is
ideslized tito four Whitely long flat @ates contlmuous over n6n-
deflecting line supports. Evidently two distinct types of bucKLe
pattern mnst be cmu3idered. The first type (see sketch) given by

represents the case in which the nodel Mnee are straight end do not
advance longituMnXUy as they proceed around the tube: “

Y

r + - + - + –
+,
i- ‘ - + - + - +
b - + - + - + -

‘_ b
L .+ – + – + - + -x

For this buclding mode, the tube wilJ buclElecmly if.

AD
u=4—

b%

This type of buclding is re~esented by the straight portion of the
interaction curve (see figs. 2 and 3); for this ty_peof buckl.~, the
shear stresses do no external work.
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In the second tyye of bucklcn
inclined end advemce lcmgitu&@LLy
traverse the four walls of the tube.

deformatimq the
exactly one-fill

nodal lines are
wave length as they

as shc&nin the following-sketch: -

J -

+

x

Ii&m the general remarks cmcerning Fourier series in a enikk B of
7that in the regim (O,h), (0,2b the deflec-reference 2, it is seen

tim may be given by

/:

‘(
m

+ COB — E
m+

L
~Bin~ r

)

& Cos ~

m=l,3,5, . . . m=l,3,5, . . ●

(Single,rather then doulle, Fourier series are required because the
deflection is sinusoidal.along my ltie in the inftnite directian.)

This function satisfies the requirement

W(x,y) = ~(x,y+2b )

Additional conditicms that must be satisfied

W(x,y) = w(x–x,~ )

W(x,y) = -+0–x, 3-% )

that

are

o

.

(1)

(2) ‘

,

(3)

—————.. .—— _ ...— ..— . . -~. —.. ...., ,,,
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Eqpations (2) and (3) tie, reqpectivelyj conditions Uf aymuetry in
the region (O,X), (O,b) andantisymnetry fi the region (O,k), (3,2b).

*J

These condit~ are fulfilled by making ~ = %(–l) 2 and

q = --q-l) ‘ . Thus the deflection functicm becomes

[

m-l
m \

z -z-
W= sin y =+ (–1)% ‘b pb

1
Cos =

2b
m=l,3,5,..o

(4)

!rhis functicnwfU be used m u exact ~ab~ity *SiS by tie
Lagran@an nmltiplier methOd as described tirefermce 2. .

The boundary ccmditions-of zero deflectlonalong~e idealized
m??pda (comma)

w(x,()) = w(x,b) = O -

lead to the constraining relatiomhipa

,.
I&l

m

‘z q-l ) 2 =0
lD’=1,3,5,. . ●

>= +.)%.()
Dl=l,3,5, . ● ●

(5)
a

(6)

-. —..- .—-— ——...——— ._ ——-.—c -.
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The internal ener~

end T~ are given %y the

V and the ex%ernal work of the stresses Tc “

eqmessions

C7xd.y

“-

Subetitut@ the Fourier expansion of w (equatim (k)) tito the
energy expressions yielde

Tc = ‘= c (%2+%2)2b2$ m=l,3,5, . . .

(7)

.

.

.

(9)

1
,. .-— . . . . . . . — -— . . . . ----
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where

9

The function to be minimized is

1

lmlimizing

fields

m-l

>&, (-l)=%+s (-l)ycm
m=l,3,5, . . . 111=1,3,5,. . .

(lo)

equation (10) with re9pect to the coefficients as and cj

j–1 *1

aF
(4+ j2~2)2aj–

T
—=
baj

16kcf12aj + 16k~p3j(–1 ) 2 CJ – a(–1 ) = o (u)

*1 ~
aF—= (4 + Jw )2C3 – 16kcP2c3 + 16k#3j(-1) 2 ad – q(–1) 2 = O (12)
acd

.- .- . . . . . .—.—- .—- —.



where

j = 1,3,5,...

and

After simplification, eqwtims (1.1)and (12) becom

+!!

AJa3
T

+ ‘3C3 = a(–l)

and

j-l

Bjad + A3C3 = 7(–1) 2

where

\

As = (4 + j2j32)2 – 16kc~2

and

~

B3 = 16k~f33j(-1) 2

‘\

. _— .—. ——. .-— —
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men

exd

B2
%2- 3

J&

‘2 2
Aj~(–1) – Blc@)

C* =

Aj2 -Bj2
d

(13)

. (14)

substituting for aj and llj in the c~ relatitips (5)

and. (6) ~elds

T AaR-%ln
lJi=l,3,5, . . ● %?–%?=O

I?or
the

the Iagmn@an
Coniiitionthat

(
02

E
m=l,3,5, . . .

ImiLtipliers,a ad. ~, to have values
must be satisfied is

)(‘h 2 w

x )%2
f%12-J%112 – lH,3,5,... f%Jl%2%2

(15)

other than zero,

= o (17)

.—.——. .. . .- —c. — —..
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Equation (17) cen be factored tito

(18)

end
,.

! r fA’lu=O (19)
m=l,3,5, . . .

Both eqyations (18) end (19) will.
or negative si~ merely indicates

Equation (18) H be written

‘+
n— >

give identical results. The positive
the direction of shear. #

1
“—

/

111=1,3,5,● ● ●
?&

(k + ‘IU?P2)2 - 16J@2 + 16k@3(-1)

(20)

.

.

.

.

,.

The critical combination of ccmpressim-stress coefficient kc and

shetiress coefficient k8 for an infinitely long square tube cen be

calculated fram equation (20). For a specified value of one of the
stress coefficients andwave-len@h ratio P, the correapmding value of
the other stresg coefficient that will satisfy equaticm (20) cm 30
obtained. This-
until aminhum
The curviltiear
minimum values.

procedure is used for several different values of P
value of the corresponding stress coefficient is obtained.’
portion of titeraction curve was drawn using these

(See table 1 ~

.

.
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.

TABLE 1
.

CRITICAL CQMBINATIORS @ S’I!EWSSCOEFFICDZN!L’S,AND RATIOS

Ccmpreselon Shear

kc %
,

k~ Rs

o 0 5.343 1

2 .50 3=%’ ● 735

3“ . ●75 3.03 .568

3.8 .95 2.25 .422

4’ “1 2.00 .374

—
-

/.

.
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Figure l.- Long square tube in torsim and compression.
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ks‘s

2

I

o
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flat plate

Simply supported

\

\

“\

I 2 ‘3 4 5

kc

FigulY32.- Critical combhtions of shear-dress and compressive-stress
coefficients for lnzcklhg of a long sqzare tule in torsion and
compression.
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Elastically restrained

\
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\
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\

.2 ‘ .4

Figure 3.- Interaotion curve in
long sqq tube h

.6
Rc

.8 1.0

stress-ratio fomn for buckldng of a
torsion and compression.
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